

Funciones logarítmicas

Semana 13

Matemática de 6 to

Profesores: Ender Araujo y Kelvin Cuevas.

Definición de función logarítmica con base a

Para x > 0, a > 0 y $a \ne 1$,

$$y = \log_a x \operatorname{si} y \operatorname{solo} \operatorname{si} x = a^y$$
.

La función dada por

$$f(x) = \log_a x$$
 léase como "logaritmo base a de x".

se llama la función logarítmica con base a.

Función logaritmo natural

La función definida por

$$f(x) = \log_e x = \ln x, \quad x > 0$$

se llama función logaritmo natural.

Evaluar logaritmos

Use la definición de función logarítmica para evaluar cada uno de los siguientes logaritmos al valor indicado de x.

a.
$$f(x) = \log_2 x$$
, $x = 32$

b.
$$f(x) = \log_3 x, \quad x = 1$$

c.
$$f(x) = \log_4 x$$
, $x = 2$

c.
$$f(x) = \log_4 x$$
, $x = 2$ **d.** $f(x) = \log_{10} x$, $x = \frac{1}{100}$

Solución

a.
$$f(32) = \log_2 32 = 5$$

porque
$$2^5 = 32$$
.

b.
$$f(1) = \log_3 1 = 0$$

porque
$$3^{0} = 1$$
.

c.
$$f(2) = \log_4 2 = \frac{1}{2}$$

porque
$$4^{1/2} = \sqrt{4} = 2$$
.

d.
$$f(\frac{1}{100}) = \log_{10} \frac{1}{100} = -2$$

porque
$$10^{-2} = \frac{1}{10^2} = \frac{1}{100}$$
.

$$1000 = 10^3$$

$$log(1000) = 3$$

$$10000 = 10^4$$

$$log(10000) = 4$$

$$0.1 = 10^{-1}$$

$$log(0.1) = -1$$

$$0.001 = 10^{-3}$$

$$log(0.001) = -3$$

Evaluar logaritmos comunes en una calculadora

Use calculadora para evaluar la función dada por $f(x) = \log x$ en cada valor de x.

a.
$$x = 10$$

b.
$$x = \frac{1}{3}$$

c.
$$x = 2.5$$

d.
$$x = -2$$

Solución

Valor de la función

a.
$$f(10) = \log 10$$

b.
$$f(\frac{1}{3}) = \log \frac{1}{3}$$

c.
$$f(2.5) = \log 2.5$$

d.
$$f(-2) = \log(-2)$$

Tecleo en calculadora de gráficas

Pantalla

1

-0.4771213

0.3979400

ERROR

Observe que la calculadora exhibe un mensaje de error (o un número complejo) cuando el usuario trata de evaluar $\log(-2)$. La razón de esto es que no hay una potencia de número real a la cual 10 se pueda elevar para obtener -2.

Propiedades de los logaritmos.

- **1.** $\log_a 1 = 0$ porque $a^0 = 1$.
- **2.** $\log_a a = 1$ porque $a^1 = a$.
- **3.** $\log_a a^x = x \ y \ a^{\log_a x} = x$

Propiedades inversas

4. Si $\log_a x = \log_a y$, entonces x = y. Propiedad biunívoca

Propiedades de los logaritmos naturales

- 1. $\ln 1 = 0$ porque $e^0 = 1$.
- **2.** $\ln e = 1$ porque $e^1 = e$.
- 3. $\ln e^x = x \operatorname{si} e^{\ln x} = x$

Propiedades inversas

4. Si $\ln x = \ln y$, entonces x = y. Propiedad biunívoca

Usar las propiedades de los logaritmos

a. Simplificar: $\log_4 1$

b. Simplificar: $\log_{\sqrt{7}} \sqrt{7}$

c. Simplificar: $6^{\log_6 20}$

Solución

- **a.** Usando la propiedad 1, se deduce que $\log_4 1 = 0$.
- **b.** Usando la propiedad 2, se puede concluir que $\log_{\sqrt{7}} \sqrt{7} = 1$.
- **c.** Usando la propiedad inversa (propiedad 3), se deduce que $6^{\log_6 20} = 20$.

Propiedades de los logaritmos.

- 1. $\log_a 1 = 0$ porque $a^0 = 1$.
- **2.** $\log_a a = 1$ porque $a^1 = a$.
- 3. $\log_a a^x = x y a^{\log_a x} = x$ Propiedades inversas
- **4.** Si $\log_a x = \log_a y$, entonces x = y. Propiedad biunívoca

Usar la propiedad biunívoca

a.
$$\log_3 x = \log_3 12$$
 Ecuación original

$$x = 12$$

Propiedad biunívoca

b.
$$\log(2x + 1) = \log 3x \implies 2x + 1 = 3x \implies 1 = x$$

c.
$$\log_4(x^2 - 6) = \log_4 10 \implies x^2 - 6 = 10 \implies x^2 = 16 \implies x = \pm 4$$

Propiedades de los logaritmos.

1.
$$\log_a 1 = 0$$
 porque $a^0 = 1$.

2.
$$\log_a a = 1$$
 porque $a^1 = a$.

3.
$$\log_a a^x = x y a^{\log_a x} = x$$

Propiedades inversas

4. Si $\log_a x = \log_a y$, entonces x = y. Propiedad biunívoca

Usar las propiedades de los logaritmos naturales

Use las propiedades de los logaritmos naturales para simplificar cada expresión.

a.
$$\ln \frac{1}{e}$$

b.
$$e^{\ln 5}$$

a.
$$\ln \frac{1}{e}$$
 b. $e^{\ln 5}$ **c.** $\frac{\ln 1}{3}$ **d.** $2 \ln e$

Solución

a.
$$\ln \frac{1}{e} = \ln e^{-1} = -1$$
 Propiedad inversa **b.** $e^{\ln 5} = 5$

b.
$$e^{\ln 5} = 5$$

Propiedad inversa

c.
$$\frac{\ln 1}{3} = \frac{0}{3} = 0$$

Propiedad 1 d.
$$2 \ln e = 2(1) = 2$$
 Propiedad 2

Propiedades de los logaritmos naturales

1.
$$\ln 1 = 0$$
 porque $e^0 = 1$.

2. In
$$e = 1$$
 porque $e^1 = e$.

3.
$$\ln e^x = x \text{ si } e^{\ln x} = x$$

En los Ejercicios 7-14, escriba la ecuación logarítmica en forma exponencial. Por ejemplo, la forma exponencial de $\log_5 25 = 2 \text{ es } 5^2 = 25.$

7.
$$\log_4 16 = 2$$

9.
$$\log_9 \frac{1}{81} = -2$$

11.
$$\log_{32} 4 = \frac{2}{5}$$

13.
$$\log_{64} 8 = \frac{1}{2}$$

8.
$$\log_7 343 = 3$$

10.
$$\log \frac{1}{1000} = -3$$

12.
$$\log_{16} 8 = \frac{3}{4}$$

14.
$$\log_8 4 = \frac{2}{3}$$

8 puntos

En los Ejercicios 15-22, escriba la ecuación exponencial en forma logarítmica. Por ejemplo, la forma logarítmica de $2^3 = 8 \text{ es } \log_2 8 = 3.$

15.
$$5^3 = 125$$

17.
$$81^{1/4} = 3$$

19.
$$6^{-2} = \frac{1}{36}$$

21.
$$24^0 = 1$$

16.
$$13^2 = 169$$

$$18. 9^{3/2} = 27$$

20.
$$4^{-3} = \frac{1}{64}$$

22.
$$10^{-3} = 0.001$$

16. $13^2 = 169$ **18.** $9^{3/2} = 27$ **8 puntos**

En los Ejercicios 67-70, use una calculadora para evaluar la función en el valor de x indicado. Redondee el resultado a tres lugares decimales.

Función

67.
$$f(x) = \ln x$$

$$x = 18.42$$

68.
$$f(x) = 3 \ln x$$

$$x = 0.74$$

$$x = 18.42$$

 $x = 0.74$ 2 puntos

69.
$$g(x) = 8 \ln x$$

$$x = 0.05$$

70.
$$g(x) = -\ln x$$

$$x = \frac{1}{2}$$

En los Ejercicios 71-74, evalúe $g(x) = \ln x$ en el valor de x indicado sin usar calculadora.

71.
$$x = e^5$$

72.
$$x = e^{-4}$$

73.
$$x = e^{-5/6}$$

72.
$$x = e^{-4}$$

74. $x = e^{-5/2}$

4 puntos

En los Ejercicios 85-92, use la propiedad biunívoca para despejar *x* de la ecuación.

85.
$$\log_5(x+1) = \log_5 6$$

86.
$$\log_2(x-3) = \log_2 9$$

87.
$$\log(2x+1) = \log 15$$

88.
$$\log(5x + 3) = \log 12$$

89.
$$\ln(x+4) = \ln 12$$

90.
$$\ln(x-7) = \ln 7$$

91.
$$\ln(x^2 - 2) = \ln 23$$

92.
$$\ln(x^2 - x) = \ln 6$$

8 puntos

30 puntos

Tabla de entrega	
Semanas de retraso	Resta de porcentaje a la nota final
1	15%
2	30%
3	45%
4	No se acepta